地表γ線量率データベースの改定について

湊 進

放射線地学研究所

放射缐地学研究所、名古屋

2015

地表 γ線量率データベースの改定について

放射線地学研究所 湊 進

1. はじめに

日本列島における地表 γ 線量率(自然 γ 線量率)のデータベース(以下 DB と略記)を 2005年に改定して以来、10年ぶりに内容を大巾に改定した。旧 DB の詳細については文献 1)に詳しく述べてある。当所(以下「放地研」あるいは"RESL"と略記)は DB に基づく 等高線図を放地研ウェブサイト(<u>http://www1.s3.starcat.ne.jp/reslnote/</u>)で公開すると ともに、DB プログラム DOSEEK Ver.13 を販売していた。緯度経度を入力すると当該地 点の地表 γ 線量率と岩石種および地質年代が表示されるものである。

旧 DB では各測定実施機関が発表した土壌線量率データをそのまま利用していた。当時 は測定実施機関ごとの測定法の違いに起因する系統誤差を評価する方法を考えつかなかっ たためである。最近、適切な変換関数を用いて全データを変換する手法を思いついた。この 方法で DB を改定した結果、日本列島の各地点の線量率を統一的な観点から表示できるよ うになった。また、DB として放地研ウェブサイトで公開した。以下に改定方法と結果を詳 しく述べる。

2. 旧 DB の概要

これは全国 4372 地点の測定値を 2203 地点に集約して(Fig.1) 逆距離加重法で補間し、 緯度経度各 0.1°ごとに区切った 3779 地点に割り振って取り出せるようにしたものである。 2203 点の関連資料は本報告の末尾に付録 3 として載せてある。

Fig.2 が DOSEEK Ver.13 の使用例である。

3. 改定方法

まず改定方法の概略を述べる。旧 DB のうち放地研が同一測定法で測った県の土壌線量 率データと産業技術総合研究所地質調査総合センター(以下「地調」あるいは "GSJ"と略 記)の河川堆積物線量率データを比較して回帰直線を求め、これを全県に適用して改定する。

はじめに述べたように旧 DB では各測定実施機関の発表データをそのまま利用していた。 旧 DB で用いた土壌線量率データは研究機関ごとに異なる測定手法で得られたものである。 そのため測定法の違いに起因する系統誤差が大きいのではないかと懸念されていた。

地調は自然起源の元素によるバックグラウンド値を把握する目的で日本全土 3024 地点に

おいて河川堆積物を採取した。全試料に対し同一手法で 53 元素の濃度を評価し、地球化学 図として公開されている²⁰。このうちのカリウム、ウラン、トリウム濃度を利用すれば次式 を使って線量率を算出できる³⁰。

$D = 13.0C_{\kappa} + 5.4C_{U} + 2.7C_{Th}$

ここで D (nGy/h) は地上 1mの高さでの線量率、C_K(%), C_U(ppm) および C_{Th}(ppm) はそ れぞれカリウム、ウランおよびトリウムの濃度である。

地調データは放地研の DB とは異なり、母集団が河川堆積物である。河川堆積物は分級効 果により放射能が濃縮されたり、逆に溶脱・洗脱効果により希釈されたりしている。それゆ え土壌線量率の頻度分布と同じではない。しかし全国を一貫した測定法で評価している上 に測定地点も多い。従って都道府県ごとに測定法の異なるデータを集めた旧 DB のデータ のバラツキの程度を調べるためには地調データが有効であると判断した。

これら地調データは対数正規分布を示している(Fig.3)。そのために幾何平均を採って旧 DBのデータと比較した。沖縄を除く 46 都道府県を標本数に応じて 70 の地域に分けた。 Fig.4 がその結果である。

同図によれば地調データとの相関関係は比較的良好である。黒丸は放地研が直接に実施 した同一測定法による 23 府県 25 地域の結果である。これは相関がきわめて良い。白丸は 他機関がそれぞれの測定法で実施したものである。なかには全体からかなり離れたデータ も見受けられる。

Fig.4の放地研実施の測定データを詳しく見てみたものが Fig.5 である。放地研デー

タ、地調データともに標本数が18以上の府県のみの全データをとり上げてある。また府 県内の全データに対する標準偏差も示してある。Fig.6はその頻度分布である。同図作成 においてはランダムサンプリングにより各県での両者の標本数を同じにして偏りを少な くしている。図から明らかなように土壌データに比べて河川堆積物には前述の濃縮・希 釈効果が見られる。Fig.5において、回帰式の勾配が1より小さいことも濃縮・希釈効果 の現れである。

Fig.6 Comparison between frequency distributions of soil (RESL) and river sediment (GSJ) data

地調データは全県のデータが揃っている(ただし佐渡島以外の島嶼部は測定されていない;付録1参照)。Table1に旧DBの佐渡島以外の島嶼部を除く県幾何平均(同表で Originalと表記)と、地調データの県幾何平均をFig.5の回帰式に代入して得たもの (Revisedと表記)を比べた結果を示す。新潟県を除いてすべて本土側のデータである。

No.	Prefecture	Original	Revised	Ratio(R/O)			
1	HOKKAIDO	41.3	31.9	0.771			
2	AOMORI	27.7	23.9	0.863			
3	IWATE	33.8	33.6	0.994			
4	MIYAGI	31.6	27.3	0.863			
5	AKITA	35.1	31.9	0.910			
6	YAMAGATA	40.9	37.2	0.911			
7	FUKUSHIMA	33.1	41.2	1.244			
8	IBARAKI	32.1	39.7	1.237			

Table 1 Geometric mean prefectural dose rates

9	TOCHIGI	35.5	38.1	1.072
10	GUNMA	26.3	27.9	1.061
11	SAITAMA	38.4	36.7	0.955
12	CHIBA	28.7	31.3	1.091
13	TOKYO*	25.9	25.9	1.000
14	KANAGAWA	21.3	21.4	1.002
15	NIIGATA	50.7	48.3	0.954
16	TOYAMA	54.3	57.4	1.057
17	ISHIKAWA	43.9	38.4	0.875
18	FUKUI	46.8	42.1	0.899
19	YAMANASHI	30.2	34.5	1.142
20	NAGANO	36.0	41.4	1.150
21	GIFU	54.1	59.4	1.098
22	SHIZUOKA	30.8	30.2	0.981
23	AICHI	43.1	55.8	1.295
24	MIE	49.7	49.7	1.000
25	SHIGA	54.9	53.9	0.982
26	КҮОТО	49.9	49.9	0.999
27	OSAKA	50.4	53.6	1.064
28	HYOGO	60.9	47.1	0.774
29	NARA	49.9	49.9	1.000
30	WAKAYAMA	49.7	42.2	0.849
31	TOTTORI	58.1	50.8	0.873
32	SHIMANE	41.0	51.9	1.242
33	OKAYAMA	64.2	52.3	0.815
34	HIROSHIMA	73.3	73.4	1.001
35	YAMAGUCHI	59.8	59.1	0.988
36	TOKUSHIMA	51.1	46.1	0.902
37	KAGAWA	58.7	56.4	0.961
38	EHIME	62.3	46.0	0.738
39	KOCHI	55.7	45.0	0.808
40	FUKUOKA	38.6	46.3	1.198
41	SAGA	47.8	42.2	0.882
42	NAGASAKI	35.7	35.3	0.990
43	KUMAMOTO	39.8	40.1	1.007
44	OITA	37.8	34.4	0.909

45	MIYAZAKI	43.6	43.9	1.007
46	KAGOSHIMA	42.3	44.7	1.057
	mean	43.7	42.9	0.995

*東京都の地調データは10ヶしかないため、放地研データをそのまま使った。

改定 DB は Table 1 の比 (同表の Ratio(R/O) を旧 DB の都道府県ごとの全データに 掛けたものである。北海道の全 212 データには一律に 0.771 を、青森県の全 67 データに は一律に 0.863 を、という具合である。これにより測定実施機関ごとの測定法の違いに由 来する系統誤差を小さくできたと考えている。

Fig.7に両 DB から得た等高線図を示す。Table 1 の Ratio(R/O)を参照しながら両者を 比較して欲しい。

Fig.7 Comparison between original (2006) and revised (2016) data

改定 DB は放地研ウェブサイト(<u>http://www1.s3.starcat.ne.jp/reslnote/</u>) にて緯 度、経度、岩石種、地質年代、線量率の表として公開されている。また、プログラム DOSEEK Ver.15 として販売している。ただし前述のように分解能は 0.1°である。

旧 DB プログラムでは花崗岩類、酸性火山岩、中性岩、中性岩-塩基性岩、塩基性岩、付 加体、堆積岩、変成岩、堆積物に分類していた。改定 DB プログラムでは珪長質火山岩、 苦鉄質火山岩、珪長質および苦鉄質火砕流、珪長質深成岩、苦鉄質深成岩、付加体、堆積 岩、変成岩に分類した。分類は丸善の「日本列島の地質」附属の CD-ROM に典拠した(日本 列島の地質編集委員会編(1997)日本列島の地質. 理科年表読本. 丸善)。参考までに DOSEEK Ver.15 の使用例を Fig.8 に示す。DOSEEK は逐次入力であるが、走行サーベイ などで得られる連続データの処理もプログラム DOSEQL により可能である。飯田線(長 野県岡谷市~愛知県豊橋市)で測定した例も併せて Fig.8 に示す。Table 2 はその出力であ る。

Fig.8 Example of I/O data for DOSEEK and DOSEQL

Table 2 Example of output data

DOSEQL OUTPUT DATA

飯田線(2009.10.25) 96

番号	緯度	経度	岩石種	地質年代	線量率
	(°)	(°)			(nGy/h)
1	36.053	138.048	堆積岩	第四紀	38.3
2	36.030	138.025	堆積岩	第四紀	38.3
3	35.982	138.000	変成岩	後期白亜紀	38.2
4	35.973	137.994	変成岩	後期白亜紀	38.1
5	35.966	137.987	変成岩	後期白亜紀	38.1
6	35.950	137.988	変成岩	後期白亜紀	38.1
7	35.933	137.988	変成岩	後期白亜紀	38.1
8	35.911	137.992	変成岩	後期白亜紀	38.1
9	35.898	137.991	堆積岩	第四紀	36.9
10	35.876	137.987	堆積岩	第四紀	36.9
11	35.858	137.981	堆積岩	第四紀	36.9
12	35.842	137.968	堆積岩	第四紀	36.9
13	35.835	137.963	堆積岩	第四紀	36.9
14	35.809	137.943	堆積岩	第四紀	36.9
15	35.801	137.947	堆積岩	第四紀	36.9
16	35.775	137.947	堆積岩	第四紀	42.0
17	35.764	137.942	堆積岩	第四紀	42.0
18	35.745	137.943	堆積岩	第四紀	42.0
19	35.733	137.940	堆積岩	第四紀	42.0
20	35.724	137.938	堆積岩	第四紀	42.0
21	35.709	137.937	堆積岩	第四紀	42.0
22	35.693	137.936	珪長質深成岩	後期白亜紀	42.4
23	35.674	137.932	珪長質深成岩	後期白亜紀	42.4
24	35.663	137.935	珪長質深成岩	後期白亜紀	42.4
25	35.652	137.914	珪長質深成岩	後期白亜紀	42.4
26	35.642	137.904	珪長質深成岩	後期白亜紀	42.4
27	35.624	137.913	珪長質深成岩	後期白亜紀	42.4
28	35.614	137.907	珪長質深成岩	後期白亜紀	42.4
29	35.593	137.916	珪長質深成岩	後期白亜紀	44.6
30	35.575	137.906	珪長質深成岩	後期白亜紀	44.6

31	35.569	137.899	堆積岩	第四紀	45.0
32	35.546	137.889	堆積岩	第四紀	45.0
33	35.541	137.879	堆積岩	第四紀	45.0
34	35.531	137.864	堆積岩	第四紀	45.0
35	35.517	137.842	堆積岩	第四紀	45.0
36	35.519	137.833	堆積岩	第四紀	45.0
37	35.517	137.824	堆積岩	第四紀	45.0
38	35.509	137.812	堆積岩	第四紀	45.0
39	35.504	137.831	堆積岩	第四紀	45.0
40	35.501	137.842	堆積岩	第四紀	45.0
41	35.494	137.844	珪長質深成岩	後期白亜紀	48.5
42	35.484	137.843	珪長質深成岩	後期白亜紀	48.5
43	35.472	137.843	珪長質深成岩	後期白亜紀	48.5
44	35.461	137.831	珪長質深成岩	後期白亜紀	48.5
45	35.450	137.819	珪長質深成岩	後期白亜紀	48.5
46	35.438	137.820	珪長質深成岩	後期白亜紀	48.5
47	35.426	137.820	珪長質深成岩	後期白亜紀	48.5
48	35.416	137.820	珪長質深成岩	後期白亜紀	48.5
49	35.399	137.813	珪長質深成岩	後期白亜紀	54.9
50	35.373	137.816	珪長質深成岩	後期白亜紀	54.9
51	35.346	137.841	珪長質深成岩	後期白亜紀	54.9
52	35.333	137.844	珪長質深成岩	後期白亜紀	54.9
53	35.309	137.851	珪長質深成岩	後期白亜紀	54.9
54	35.271	137.857	変成岩	後期白亜紀	53.4
55	35.264	137.836	変成岩	後期白亜紀	53.4
56	35.251	137.838	変成岩	後期白亜紀	53.4
57	35.233	137.838	変成岩	後期白亜紀	53.4
58	35.207	137.839	変成岩	後期白亜紀	53.4
59	35.187	137.821	変成岩	後期白亜紀	49.3
60	35.160	137.873	変成岩	後期白亜紀	49.3
61	35.151	137.873	変成岩	後期白亜紀	49.3
62	35.128	137.865	変成岩	後期白亜紀	49.3
63	35.112	137.857	変成岩	後期白亜紀	49.3
64	35.089	137.813	変成岩	後期白亜紀	50.3
65	35.082	137.806	変成岩	後期白亜紀	50.3
66	35.066	137.789	堆積岩	前期白亜紀	52.0

67	35.058	137.778	堆積岩	前期白亜紀	52.0
68	35.053	137.767	堆積岩	前期白亜紀	52.0
69	35.047	137.756	堆積岩	前期白亜紀	52.0
70	35.046	137.747	堆積岩	前期白亜紀	52.0
71	35.026	137.717	堆積岩	前期白亜紀	52.0
72	35.021	137.707	堆積岩	前期白亜紀	52.0
73	34.999	137.667	堆積岩	後期白亜紀	54.0
74	34.988	137.647	堆積岩	後期白亜紀	54.0
75	34.986	137.624	堆積岩	後期白亜紀	54.0
76	34.967	137.616	堆積岩	後期白亜紀	54.0
77	34.949	137.606	堆積岩	後期白亜紀	54.0
78	34.929	137.580	変成岩	後期白亜紀	55.5
79	34.923	137.568	変成岩	後期白亜紀	55.5
80	34.918	137.554	変成岩	後期白亜紀	55.5
81	34.927	137.552	変成岩	後期白亜紀	55.5
82	34.909	137.530	変成岩	後期白亜紀	55.5
83	34.907	137.517	変成岩	後期白亜紀	55.5
84	34.903	137.506	変成岩	後期白亜紀	55.5
85	34.898	137.496	堆積岩	第四紀	41.8
86	34.886	137.481	堆積岩	第四紀	41.8
87	34.873	137.458	堆積岩	第四紀	41.8
88	34.865	137.444	堆積岩	第四紀	41.8
89	34.861	137.434	堆積岩	第四紀	41.8
90	34.844	137.418	堆積岩	第四紀	41.8
91	34.819	137.400	堆積岩	第四紀	41.8
92	34.806	137.384	堆積岩	第四紀	48.1
93	34.794	137.366	付加体	第四紀	42.3
94	34.778	137.374	付加体	第四紀	42.3
95	34.773	137.377	付加体	第四紀	42.3
96	34.760	137.385	付加体	第四紀	42.3

4. おわりに

今回の改定は、これまで都道府県ごとに様々な測定法で得られた土壌γ線量率データを、 地調の河川堆積物データを媒介にして放地研規格に統一したものである。将来、一貫した 測定法で全国調査が行われるまでは、地域ごとにデータが更新されるたびに本報告の手法 でDBを改訂してゆく方針である。

文 献

- 1) 湊 進, 日本における地表 y 線の線量率分布, 地学雑誌, 115:87-95 (2006)
- 2) AIST 海と陸の地球化学図, https://gbank.gsj.jp/geochemmap/
- 3) Beck, H.L., DeCampo, J. and Gogolak, C., "In situ Ge(Li) and NaI(Tl) gamma-ray spectrometry", USAEC Report HASL-258, New York, N.Y. 10014 (1972)

- 付録 1 改定 DB と地調データの等高線図

Fig.A-1 Comparison between the two maps based on revised DB and GSJ data

付録 2 舗装データ

本 DB は原則として土壌上で測定されたデータを基にしている。しかし宮城県については 標本数が少なかったので市町村別舗装データを下図で変換して代用している(付録3参照)。

normalized dose rate on pavement

付録 3 地表 γ線量率データベース関連資料

北海道(212データ)

- 長門 徹、丹治辰男、沖野典夫、蛭田陽一、望月 定(1997) 車を利用した北海道における 環境y線測定、保健物理、32:295-304.
- 輪嶋隆博、細川洋一郎、竹腰光男、藤田 智、金子昌幸、安河内太郎(1997)ポータブル型 γ-スペクトロサーベイメータを用いた北海道の環境γ線量の調査、Radioisotopes、46:291-297.

輪嶋らデータを長門らデータの平均値で規格化したのち両者の平均をとった。

青森県(67)

Iyogi,T., Ueda,S., Hisamatsu,S., Kondo,K., Haruta,H., Katagiri,H., Kurabayashi,M., Nakamura,Y. and Tsuji,N. (2002) Environmental gamma-ray dose rate in Aomori prefecture, Japan, Health Phys., 82: 521-526.

岩手県(32)

湊(2003) SS-γ 現場測定

宮城県(74)

佐藤健一、佐藤信俊、末永紳一、阿部勝彦、阿部武雄(1987)宮城県における空間ガンマ線 線量率分布、宮城県原子力センター年報、第6巻:13-16.(走行サーベイ) 湊依頼測定(小林 2003) MYRATE 5回測定平均(10市町村 74箇所)で佐藤らデータを規格 化(nGy/h=14.0 x μR/h)

秋田県(60)

Zeng, X.S., Takizawa, Y. and Yamashita, J. (1996) Investigation on environmental radiation dose in Akita prefecture and radiophotoluminescence dosimeters used in environmental monitoring, J. Health Physics, **31**: 435-441.

山下順助、度会二郎、久松俊一(2001)秋田県民の環境γ線被ばく線量、RAI0ISOTOPES, **50**: 435-441. (未舗装:2015 私信)

柳澤 融(1997) 玉川温泉と放射能、温泉科学、47:98-103

山形県(22)

凑(2003) SS-γ 現場測定

福島県(39)

福島県原子力センター(1999)福島県内自然放射能実態調査報告書

TLD データから 30nGy/h を差し引き

茨城県(63)

市村雄一、三好 徹、橋本和子、田辺芳次、平井保夫(1993)茨城県における空間ガンマ線 量率分布とその構成要因、茨城県公害技術研究所年報、第5巻:23-31.

栃木県(22)

湊依頼測定(杉野・細田 2004)DECAYON 現場測定

群馬県(23)

湊依頼測定(杉野・細田 2004)DECAYON 現場測定

埼玉県(19)

湊依頼測定(杉野・細田 2004)DECAYON 現場測定

千葉県(25)

湊依頼測定(杉野・細田 2004)DECAYON 現場測定

東京都(25)

湊依頼測定(細田 2003) DECAYON 現場測定

神奈川県(23)

湊(2004) SS-γ 現場測定

新潟県(47)

- 殿内重政、霜鳥達雄、米田和広、田邊広和(1990)新潟県内における自然放射線分布状況調 査-各種放射線測定器による柏崎刈羽地域の空間放射線レベルの測定(1)-、新潟県衛 生公害研究所年報、第6巻:141-147.
- 殿内重政、米田和広、原 武彦(1991)新潟県内における自然放射線分布状況調査(2) -下越地域の空間放射線レベルー、新潟県衛生公害研究所年報、第7巻:147-151.

米田和広、殿内重政、葉葺久尚、鈴木 斉(1992)新潟県内における自然放射線分布状況調 査(3) - 魚沼及び上越地域の空間放射線レベルー、新潟県衛生公害研究所年報、第8巻: 160-164.

米田和広、殿内重政、梅津 了(1993)新潟県内における自然放射線分布状況調査(4) – 佐渡地域の空間放射線レベルー、新潟県衛生公害研究所年報、第9巻:116-120.

高橋 斉、小林 正(1994)新潟県内における自然放射線分布状況調査(5) - 長岡地域の 空間放射線レベルー、新潟県衛生公害研究所年報、第10巻:102-104.

富山県(22)

凑ら (2004) SS-γ, DECAYON 現場測定

石川県(41)

中谷 光、四月朔日富司子、酒井道則、矢鋪満雄(1991)石川県における空間線量調査結果 (その3)-可搬型Ge半導体検出器を用いた空間線量調査-、石川県衛生公害研究所年 報、第29号:176-182.

福井県(35)

長嶋純一、高山裕美、徳山秀樹、大西勝基、早川博信、林 正樹、谷口 豊、渋谷 勝(2001) 福井県における自然放射線量分布 (3)、福井県原子力環境監視センター所報、第8巻: 47-59.

山梨県(59)

小林規矩夫(1997)山梨県における自然放射線の分布、山梨県衛生公害研究所年報、第 40 号:43-46.

長野県(23)

湊ら(1996, 2002) SS-γ, DECAYON 現場測定

岐阜県(92)

奥平文雄、木俣長生(1997)岐阜県における放射線分布、岐阜県保健環境研究所報、No.5, 14-21.

SS-γ 現場測定値(25 地点)で奥平らデータを規格化。

静岡県(47)

湊(2002) SS-γ 現場測定

愛知県(88)

大沼章子、茶谷邦男、富田伴一、青山 幹、山田直樹、山田益生、浜村憲克(1985)愛知県 における空間線量率、愛知県衛生研究所年報、No. 35:43-50.

SS-γ現場測定値(14地点)で大沼らデータを規格化。

三重県(75)

尾辺俊之、富森聡子、橋爪 清(1993)三重県内の空間放射線量率について、三重県衛生研 究所年報、No. 39:93-98. SS-y現場測定値(8地点)で尾辺らのデータを規格化。

滋賀県(51)

湊ら (2002) SS-γ, DECAYON 現場測定

京都府(22)

湊ら (2005) DECAYON 現場測定

大阪府(41)

柴山元彦、平岡由次、湊 進(2004)大阪府における地表γ線量率と地質の関連について、 大阪教育大学紀要、第 III 部門、第 52 巻: 215-223.

兵庫県(49)

磯村公郎(2002)兵庫県における空間放射線線量率の地域分布、兵庫県立健康環境科学セン ター年報、第1号:149-155.

柴山元彦、平岡由次、池田正、寺戸真(2003) 淡路島の地表γ線量率と地質、大阪教育大学 紀要、第 III 部門、第 53 巻: 9-16.

奈良県(43)

湊 進、池田 正、柴山元彦、平賀章三(2002)奈良県の地表ガンマ線量率調査、Radioisotopes, 52:42-51.

和歌山県(21)

湊ら (2004) DECAYON 現場測定

鳥取県(18)

凑(2003) SS-γ 現場測定

島根県(57)

(財)島根県環境保健公社(1999) TLD による環境放射線量バックグラウンド調査抄録.TLD データから 30nGy/h を差し引き

岡山県(55)

杉山広和、道広憲秀、清水光郎、片岡敏夫、柚木英二、森 忠繁(1996)岡山県における空間γ線量率調査、岡山県環境保健センター年報、第 20 号: 49-53.

広島県(23)

湊(2002) SS-γ 現場測定

山口県(28)

凑(2002) SS-γ 現地測定

徳島県(21)

湊ら(2005) DECAYON 現場測定

香川県(20)

凑(2004) SS-γ 現場測定

愛媛県(70)

松浦榮美、二宮 久、安永章二、矢野隆司、金子敏明、安井正良(1986)愛媛県における自 然放射線分布、愛媛県公害技術センター所報、第7号:32-37.

高知県(53)

Chikasawa, K., Ishii, T. and Sugiyama, H. (2001) Terrestrial gamma radiation in Kochi prefecture, Japan, J. Health Sci., **47**: 362-372.

福岡県 (97)

平井英治、玉利俊哉、佐伯國男、岡村正紀、松岡信明、高島良正、松田広継、広 陽二、大林 誠(1995)電離箱検出器および NaI (T1)シンチレーション検出器を用いた福岡県の自然 放射線量測定、Radioisotopes, **44**:846-855.

佐賀県(49)

石橋 博、吉田政敏、岩崎ゆかり(1997) 佐賀県内の空間放射線量率分布調査-土壌中の放 射性核種との関連-、佐賀県環境センター所報、第13号:45-64.

長崎県(71)

本土側:湊依頼測定(百武 2003) SS-γ 現場測定 壱岐・対馬・五島列島:湊(2003) SS-γ 現場測定

熊本県(22)

凑(2003) SS-γ 現場測定

大分県(57)

岡本盛義、上田精一郎、森崎澄江、池辺清士(1993)大分県における空間線量率等調査、大 分県衛生環境研究センター年報、第21号:70-71.

上記 14 市町村以外は湊依頼測定(百武 2004) SS-γ 現場測定

宮崎県(20)

凑(2003) SS-γ 現場測定

鹿児島県(80)

- 下園清香、四反田昭二、今村博香、福田大三郎(1989) 鹿児島県における自然の空間放射線 量分布、鹿児島県環境センター、第5号:101-110.
- 藤崎 学、四反田昭二、今村博香、岩田治郎(1994)可搬型 Ge 半導体検出器を用いた鹿児 島県における空間放射線量率の地域分布とその構成成分、鹿児島県環境センター、第 10 号:69-77.
- 田島義徳、猩々伸博、今村博香、奥園和光(1998)薩南諸島における空間放射線量率分布、 鹿児島県環境センター、第14号:54-63.

全国(2203データ)

付録 4 放地研関連測定で使用した測定器

SS- γ : 1" ϕ x 2" NaI(Tl)

DECAYON : 2" ϕ x 2" NaI(Tl)

補足 2016.02.22

地表γ線量率は K₂O と良い相関がある[湊 進, 日本列島における地表γ線量率分布の 地学的背景, RADIOISOTOPES, 64: 535-558 (2015)]。河川堆積物であってもKは比較的濃 縮や希釈されずに存在するため、その頻度分布は正規分布に近い。Fig. A-3 が分布である。 これは線量率の頻度分布が対数正規分布になった (Fig. 3)のとは対照的である。

そこで県別に地調の算術平均 K₂0 と放地研測定の土壌線量率の算術平均との相関を見てみる。Fig. A-4 がそれである。

and RESL dose rate

相関係数は Fig.5 ほど良くはないがまずまずの値である。Table 1 の補強の意味で、地調 $K_{2}0$ データの都道府県算術平均を Fig.A-4 の回帰式に代入して得たもの(Revised)と旧 DB の

都道府県線量率算術平均(Original)との比を Fig. A-5 に示す。同図の"K₂O vs. D(RESL)" がそれである。"D(GSJ) vs. D(RESL)"は Table 1 のデータである。両者は似たような変 化をする。

